Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry.

نویسندگان

  • K Park
  • D Lee
  • A Rai
  • D Mukherjee
  • M R Zachariah
چکیده

Aluminum nanoparticles are being considered as a possible fuel in advanced energetic materials application. Of considerable interest therefore is a knowledge of just how reactive these materials are, and what the effect of size on reactivity is. In this paper we describe results of size resolved oxidation rate using a recently developed quantitative single particle mass spectrometer (SPMS). Aluminum nanoparticles used were either generated by DC Arc discharge or laser ablation, or by use of commercial aluminum nanopowders. These particles were oxidized in an aerosol flow reactor in air for specified various temperatures (25-1100 degrees C), and subsequently sampled by the SPMS. The mass spectra obtained were used to quantitatively determine the elemental composition of individual particles and their size. We found that the reactivity of aluminum nanoparticles is enhanced with decreasing primary particle size. Aluminum nanoparticles produced from the DC Arc, which produced the smallest primary particle size (approximately 19 nm), were found to be the most reactive (approximately 68% aluminum nanoparticles completely oxidized to aluminum oxide at 900 degrees C). In contrast, nanopowders with primary particle size greater than approximately 50 nm were not fully oxidized even at 1100 degrees C (approximately 4%). The absolute rates observed were found to be consistent with an oxide diffusion controlled rate-limiting step. We also determined the size-dependent diffusion-limited rate constants and Arrehenius parameters (activation energy and pre-exponential factor). We found that as the particle size decreases, the rate constant increases and the activation energy decreases. This work provides a quantification of the known pyrophoric nature of fine metal particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size Resolved Kinetics of Nickel Nanoparticle Oxidation by Ion-Mobility Classification

Recent advancement on field of so called “nanoenergetic” materials are focused on either enhancing or tuning reactivity. On one level this issues reduces to a length-scale argument, whereby smaller fuel/oxidizer combinations result in smaller diffusion lengths and therefore higher reactivity. On another level, this discussion leads to choices of other materials beyond aluminum as the primary th...

متن کامل

Post hoc interlaboratory comparison of single particle ICP-MS size measurements of NIST gold nanoparticle reference materials.

Single particle inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that enables simultaneous measurement of nanoparticle size and number quantification of metal-containing nanoparticles at realistic environmental exposure concentrations. Such measurements are needed to understand the potential environmental and human health risks of nanoparticles. Before spICP-MS c...

متن کامل

Online single particle measurement of fireworks pollution during Chinese New Year in Nanning.

Time-resolved single-particle measurements were conducted during Chinese New Year in Nanning, China. Firework displays resulted in a burst of SO2, coarse mode, and accumulation mode (100-500nm) particles. Through single particle mass spectrometry analysis, five different types of particles (fireworks-metal, ash, dust, organic carbon-sulfate (OC-sulfate), biomass burning) with different size dis...

متن کامل

Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles

Aluminum nanoparticles have increasingly gained attention because of their potential incorporation in explosive and propellant mixtures. This letter reports on a qualitative study on the oxidation of aluminum nanoparticles containing a passivating oxide coating. Hot-stage transmission electron microscopy (TEM) studies were performed to understand the stability of the oxide coating in nanoalumin...

متن کامل

Kinetic analysis of total Lead from spent Car battery by hydrochloric acid leaching

A study of the kinetic analysis of total lead from spent Car battery ash by hydrochloric acidleaching has been examined. The physico-chemical analysis of the ash powder was carried outby the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and X–ray diffraction (XRD).The effects of the acid concentration, temperature and particle size on the rate of battery ashdissolution have been investi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 109 15  شماره 

صفحات  -

تاریخ انتشار 2005